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ABSTRACT

Let A be a Commutative Banach algebra and Z be a closed ideal in A. We can
define so called I-product on A x Z, which makes it a commutative Banach algebra
with some suitable norm. It is denoted by A x; Z. In this paper, the Gel’fand space
and the Shilov boundary of A x Z is characterised in terms of that of A and Z.
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1. Introduction

Let A and B be commutative Banach algebras. Then the Gelfand space and the Shilov
boundary of the cartesian product A x B are characterized in [3]. If B is a closed
subalgebra of A, then these two objects of direct-sum product A x 4B are characterized
in [4]. Similarly, if Z is a closed ideal of A, then these objects of the convolution product
A x. T are characterized in [5]. Here we define another product on A x Z motivated
from the direct-sum product. Let A be an algebra and Z be an ideal in A. Then A x ;7T
is an algebra with pointwise linear operations and the I- product defined as

(a,z)(b,y) = (ab,ay + b+ zy) ((a,x),(b,y) € AxI).

It is easy to verify that A x; Z is commutative (resp. unital) iff A is commutative
(resp. unital). If A is a normed algebra, then A x; 7 is a normed algebra with the
norm ||(a,z)|l1 = ||la|| + ||z|| ((a,x) € A x1 T). Further, if A is a Banach algebra and
T is a closed ideal in A, then (A x;Z, || - ||1) is a Banach algebra too.

Remark 1.1. Let || - || be a norm on an algebra A and T be an ideal of A. Let
l(a, z)||c = max{||al, ||z||} ((a,z) € AxZ). Then | -|lcc may not be an algebra norm
on Ax;T.
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2. Basic Results

Throughout this paper, A is an algebra over the complex field C and Z is an ideal in
A. Let A_; denote the set of all quasi invertible elements of A. If A is unital, then A1
is the set of all invertible elements of A. Further, o 4(a) and 7 4(a) denote respectively
the spectrum and the spectral radius of a in A. Then we have the following.

Proposition 2.1. Let (a,x) € Ax;Z. Then

(1) (a,2) € Axr D) Viffa+x,aec AL
(2) (a,x) € (Ax1T)_1 iffa+xz,a € A_y;
(3) oax,z((a,2)) = ocala+z)Uo(a);

(4) rax,z((a,x)) = max{ra(a+ z),r4(a)}.

Proposition 2.2. Let A be a normed algebra and T be a closed ideal in A. Then
A X1 T has a left approzimate identity iff A has a left approximate identity. (Similar
results are true for right, bounded left, bounded right approzimate identity.)

Proof. Let {(eq,Tq)}acn be a left approximate identity in A x;Z and a € A. Then
leaa — al| < [leaa — al| + [[zaal] = [|(ea, za)(a,0) = (a, 0|1

Thus {e,} is a left approximate identity for A.
Conversely, suppose that A has a left approximate identity {e,}aca. Then,

I(ea, 0)(a, 2) = (a; )1 = [l[(eat, ea) = (a; 7)1 = [(eat — a)|| + [[(ear — 2)|

for every (a,z) € Ax;Z. Thus {(eq, 0) }oca is a left approximate identity for Ax;Z. O

Definition 2.3. Let A be an algebra and || - || be a norm on A. Then

(1) || - || is @ uniform norm if ||a?|| = ||al|? (a € A).
(2) A is a uniform algebra if it admits a complete uniform norm.
(3) If A is a x-algebra and ||a*a| = ||a||?*(a € A), then || || is a C*-norm on A.

Lemma 2.4. Let T be an ideal in a normed algebra (A, || - ||). Define

(@, 2)| := max{la + x|, [la]} ((a,z) € Ax1T).

Then
(1) || is a norm on Ax1Z;
(2) | -] is a uniform norm on A X Z iff || - || is a uniform norm on A;
(3) Let A be a *-algebra and T be a x-ideal in A. Then |-| is a C*-norm on A x; T
iff || -] is a C*-norm on A.

Proof. (1) It is easy.
(2) Let |- | be a uniform norm on A x;Z. Then

la?[| = 1(a*,0)] = |(a,00*] = |(a,0)* = lla]* (a € A).

Thus || - || is a uniform norm on A.
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Conversely, suppose that || - || is a uniform norm on A. Then

|(a,:1:)2] = ](aQ,ax+xa+x2)\ = max{|]a2+ax+a:a+:c2H,Ha2||}
= max{||(a+2)?|, [[c*||} = max{[la+ [ [a]*}
= max{|[(a+2)|,|al}* = |(a,)?

for all (a,z) € A x;Z. Thus |- | is a uniform norm on A x 7.
(3) This can be proved as per statement (2).
O

Corollary 2.5. Let T be a closed ideal in a Banach algebra A. Then A x; T is a
uniform algebra if and only if A is a uniform algebra.

Proof. Since A= A x {0} is a closed subalgebra of A x;Z, A is a uniform algebra
whenever A X7 Z is a uniform algebra.

Conversely, let || - || be a complete uniform norm on A. Then, by Lemma 2.4(2), | - |
is a uniform norm on A x; Z. Now we show that | -| is complete. Let {(an,z,)} be a
Cauchy sequence in (A x7Z,|-|). Then, for each n € N,

lznll < llan 4+ 2ol + [lan]
< 2max{|lan + znl], [|anll}
= 2|(an,zn)|.
This implies that {z,} is a Cauchy sequence in (Z,|| - ||). Since || - || is a complete

norm on A and 7 is closed in A, the sequence {z,} converges to some = € Z. By the
similar argument, it follows that the sequence {a,} converges to some a € A. Hence
the sequence {(an,zy)} converges to (a,z) in (A x;Z,|-|). Thus |- | is a complete
uniform norm on A x;Z. d

3. Gel’fand Space and Shilov Boundary

Throughout this section, A is a commutative Banach algebra and 7 is a closed ideal
in A. In this section, we calculate the Gel'fand space A(A x; Z) and the Shilov
boundary 9(A x; Z). Note that A(A x;Z) and 9(A x; Z) are similar to A(A x4 B)
and 0(A x4 B) calculated in [4]. First we introduce some notations.

Notations: Let ¢ € A(A). Define p*, 0% : Ax;Z — C as ot ((a, 7)) := ¢(a) + p(z)
and ¢°((a,z)) := ¢(a) ((a,z) € A x;T). Let F C A(A). Define F* := {¢o : p € F}
and F°:={p°: ¢ € F}.

Theorem 3.1. A(A x;Z) = AT(A)HA°(A).

Proof. Let 1 € A(A x;I). Define p(a) =1((a,0)) (a € A) and ¥(z) = 7((0,2)) (z €
7). Then ¢ and @ are multiplicative linear maps on A and Z, respectively such that
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n((a,x)) = p(a) + Y(x) ((a,z) € Ax1I). Now, for (a,z),(b,y) € AX1T,

1l(a, z)(b, y)] = n((a, 2))n((b,y))
= n((ab, ay + xb + 2y)) = (p(a) + P (2))(p(b) + ¥ (y))
= p(ab) +dlay + xb + zy) = p(a)p(b) + p(a)y(y) + P(x)p(b) + ()¢ (y)
= Play) +P(xb) = p(a)(y) + P(z)p(b). (3.1)

Now, if » = 0 on Z, then ¢ must be nonzero on A. Therefore ¢ € A(A). In this
case, 1((a,z)) = ¢(a) = ¢°((a,x)) ((a,z) € AxrTI). Thus 7 = ¢ € A°(A). If
1 # 0 on Z, then there exists y € Z such that ¥(y) # 0. Now, taking b = e and
a = z in Equation (3.1), we get ¢(z) = ¢(z) (x € ). Hence ¢ = ¢ on Z. Therefore,
n1((a,z)) = ¢(a) + ¥(x) = p(a) + () = ¢ ((a,z)) ((a,z) € A x; Z). Thus, in this
case, 7 = ¢t € AT(A). Thus A(A x;Z) € AT(A) 1 A°(A). The reverse inclusion is
trivial. Thus A(Ax;Z) and AT (A) |4 A°(A) are set theoretically equal. By arguments
as in [3, Theorem 2.2], it can be shown that they are homeomorphic. O

Theorem 3.2. [7, Corollary 3.5.4] Let X be a locally compact Hausdorff space, and
let A be a subalgebra of Co(X) which strongly separates the points of X. Then a point
x € X belongs to the Shilov boundary of A if and only if given any open neighbourhood
U of x, there exist f € A such that ||f|x\vllco < [|f]U]loo-

Theorem 3.3. Let A be a commutative Banach algebra and T be a closed ideal of A.
Then (A x;I) =0T (A)HI°(A).

Proof. Let oo € OA. Let U be a neighborhood of o in A(A x7Z). Then the set
U={peA(A):p" €U or ¢° € U} is a neighborhood of g in A(A). Therefore, by
Theorem 3.2, there exists a € A such that

[alacanulloe < [l loo-

If o° € A(Ax I)\U
)|

, then (a,0)"(¢°) = p(a). If ot € A(AX I)\U, then ¢ € A(A)\U
and |(a,0)"(¢")| = [¢(a

)|. This gives
10,0 5 ez o0 = Nl aganerlbe:
Also (a,0)M (1) =a(e) = (a,0)"(¢°) for every p € A(A). Hence
(@, 0)" | aax. 2y allee = lalaapullse < [alullee = [l(a,0)"|7lc0-

Therefore, by Theorem 3.2, ¢f € 9(A x; ). Thus 97(A) C (A x1 I). By Similar
arguments it follows that 9°(A) C (A x1 I).

For the reverse inclusion, let gy € 9(A x1 ). Then gy = g or gy = ¢§ for some
wo € A(A).
case-I : gy = ¢ for some ¢y € A(A). Let U be a neighborhood of ¢ in A(A). Then
U™ is a neighborhood of ¢ in A(A x; Z). Since ¢f € (A x1 ), by Theorem 3.2,
there exists (a,z) € A x; Z such that

(@, 2)" | acax, o+ oo < (@, 2)" o+ lloo-
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Hence

I(a + 2)"acapullse < (@, 2) M acax, o+ oo < (@ 2)" o+ lloo = ll(@ +2)"uloo-

Therefore ¢y € 0.A.

case-II : py = ¢ for some ¢y € A(A). Let U be a neighborhood of ¢ in A(A). Then
U? is a neighborhood of ¢§ in A(A x; Z). Since ¢§ € 0(A x1 Z), by Theorem 3.2,
there exists (a,z) € A x; Z such that

(@, 2)" | acax oo lloo < ll(a, 2) uelloc-

Hence

lla™acanvlloo < (@, 2)"aax zpvelloo < @ 2) ve lloo = lla" ]l

Therefore pg € O.A. Hence (A x;Z) C 9T (A) 4 I°(A). O

Theorem 3.4. Let A be a commutative Banach algebra and I be closed ideal in A.
Then A x.T is semisimple if and only if A is semisimple.

Proof. Let A x;Z be semisimple. Let a € A such that p(a) =0 (¢ € A(A)). Then
for any ¢ € A(A x1Z), ¢((a,0)) = 0. Since A x; T is semisimple, (a,0) = (0,0) gives
a = 0. Thus A is semisimple.

Conversely, suppose that A is semisimple. Let (a,z) € A x; Z be such that
o((a,z)) = 0 (p € A(Ax1T)). Let ¢ € A(A). Then ¢*,p° € A(A x1 Z). So
that o' ((a,z)) = ¢°((a,z)) = 0. Implies that ¢(a) = ¢(x) = 0. Since ¢ € A(A) is
arbitrary and A is semisimple, we get a = x = 0. Hence A x; Z is semisimple. O
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