

The Gel'fand Space and the Shilov Boundary of the Banach algebra $\mathcal{A} \times_I \mathcal{I}$ with I-product

Dr. H. J. Kanani

Department of Mathematics, Government Science College, Gariyadhar, Dist. Bhavnagar, Gujarat, India.

ABSTRACT

Let \mathcal{A} be a Commutative Banach algebra and \mathcal{I} be a closed ideal in \mathcal{A} . We can define so called I-product on $\mathcal{A} \times \mathcal{I}$, which makes it a commutative Banach algebra with some suitable norm. It is denoted by $\mathcal{A} \times_I \mathcal{I}$. In this paper, the Gel'fand space and the Shilov boundary of $\mathcal{A} \times_I \mathcal{I}$ is characterised in terms of that of \mathcal{A} and \mathcal{I} .

2020 Mathematics Subject Classification. Primary 46H05; Secondary 46K05.

KEYWORDS

I-product, Gel'fand space, Shilov boundary and semisimplicity.

1. Introduction

Let \mathcal{A} and \mathcal{B} be commutative Banach algebras. Then the Gelfand space and the Shilov boundary of the cartesian product $\mathcal{A} \times \mathcal{B}$ are characterized in [3]. If \mathcal{B} is a closed subalgebra of \mathcal{A} , then these two objects of direct-sum product $\mathcal{A} \times_d \mathcal{B}$ are characterized in [4]. Similarly, if \mathcal{I} is a closed ideal of \mathcal{A} , then these objects of the convolution product $\mathcal{A} \times_c \mathcal{I}$ are characterized in [5]. Here we define another product on $\mathcal{A} \times \mathcal{I}$ motivated from the direct-sum product. Let \mathcal{A} be an algebra and \mathcal{I} be an ideal in \mathcal{A} . Then $\mathcal{A} \times_I \mathcal{I}$ is an algebra with pointwise linear operations and the *I*- product defined as

$$(a,x)(b,y) = (ab, ay + xb + xy) \quad ((a,x), (b,y) \in \mathcal{A} \times_I \mathcal{I}).$$

It is easy to verify that $\mathcal{A} \times_I \mathcal{I}$ is commutative (resp. unital) iff \mathcal{A} is commutative (resp. unital). If \mathcal{A} is a normed algebra, then $\mathcal{A} \times_I \mathcal{I}$ is a normed algebra with the norm $||(a, x)||_1 = ||a|| + ||x||$ ($(a, x) \in \mathcal{A} \times_I \mathcal{I}$). Further, if \mathcal{A} is a Banach algebra and \mathcal{I} is a closed ideal in \mathcal{A} , then ($\mathcal{A} \times_I \mathcal{I}, ||\cdot||_1$) is a Banach algebra too.

Remark 1.1. Let $\|\cdot\|$ be a norm on an algebra \mathcal{A} and \mathcal{I} be an ideal of \mathcal{A} . Let $\|(a, x)\|_{\infty} = \max\{\|a\|, \|x\|\}$ $((a, x) \in \mathcal{A} \times_I \mathcal{I})$. Then $\|\cdot\|_{\infty}$ may not be an algebra norm on $\mathcal{A} \times_I \mathcal{I}$.

 ${\rm CONTACT}\ {\rm Author}\ {\rm Email:hitenmaths} 69 @gmail.com$

Article History

To cite this paper

Received : 04 May 2024; Revised : 28 May 2024; Accepted : 09 June 2024; Published : 29 June 2024

Dr. H.J. Kanani (2024). The Gel'fand Space and the Shilov Boundary of the Banach algebra $\mathcal{A} \times_{1} \mathcal{I}$ with I-product. International Journal of Mathematics, Statistics and Operations Research. 4(1), 77-81.

2. Basic Results

Throughout this paper, \mathcal{A} is an algebra over the complex field \mathbb{C} and \mathcal{I} is an ideal in \mathcal{A} . Let \mathcal{A}_{-1} denote the set of all quasi invertible elements of \mathcal{A} . If \mathcal{A} is unital, then \mathcal{A}^{-1} is the set of all invertible elements of \mathcal{A} . Further, $\sigma_{\mathcal{A}}(a)$ and $r_{\mathcal{A}}(a)$ denote respectively the spectrum and the spectral radius of a in \mathcal{A} . Then we have the following.

Proposition 2.1. Let $(a, x) \in \mathcal{A} \times_I \mathcal{I}$. Then

(1) $(a, x) \in (\mathcal{A} \times_I \mathcal{I})^{-1}$ iff $a + x, a \in \mathcal{A}^{-1}$; (2) $(a, x) \in (\mathcal{A} \times_I \mathcal{I})_{-1}$ iff $a + x, a \in \mathcal{A}_{-1}$; (3) $\sigma_{\mathcal{A} \times_I \mathcal{I}}((a, x)) = \sigma_{\mathcal{A}}(a + x) \cup \sigma_{\mathcal{A}}(a)$; (4) $r_{\mathcal{A} \times_I \mathcal{I}}((a, x)) = \max\{r_{\mathcal{A}}(a + x), r_{\mathcal{A}}(a)\}$.

Proposition 2.2. Let \mathcal{A} be a normed algebra and \mathcal{I} be a closed ideal in \mathcal{A} . Then $\mathcal{A} \times_I \mathcal{I}$ has a left approximate identity iff \mathcal{A} has a left approximate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let $\{(e_{\alpha}, x_{\alpha})\}_{\alpha \in \Lambda}$ be a left approximate identity in $\mathcal{A} \times_{I} \mathcal{I}$ and $a \in \mathcal{A}$. Then

 $||e_{\alpha}a - a|| \le ||e_{\alpha}a - a|| + ||x_{\alpha}a|| = ||(e_{\alpha}, x_{\alpha})(a, 0) - (a, 0)||_{1}.$

Thus $\{e_{\alpha}\}$ is a left approximate identity for \mathcal{A} .

Conversely, suppose that \mathcal{A} has a left approximate identity $\{e_{\alpha}\}_{\alpha\in\Lambda}$. Then,

$$\|(e_{\alpha}, 0)(a, x) - (a, x)\|_{1} = \|(e_{\alpha}a, e_{\alpha}x) - (a, x)\|_{1} = \|(e_{\alpha}a - a)\| + \|(e_{\alpha}x - x)\|$$

for every $(a, x) \in \mathcal{A} \times_I \mathcal{I}$. Thus $\{(e_\alpha, 0)\}_{\alpha \in \Lambda}$ is a left approximate identity for $\mathcal{A} \times_I \mathcal{I}$. \Box

Definition 2.3. Let \mathcal{A} be an algebra and $\|\cdot\|$ be a norm on \mathcal{A} . Then

(1) $\|\cdot\|$ is a uniform norm if $\|a^2\| = \|a\|^2$ $(a \in \mathcal{A})$.

- (2) \mathcal{A} is a uniform algebra if it admits a complete uniform norm.
- (3) If \mathcal{A} is a *-algebra and $||a^*a|| = ||a||^2 (a \in \mathcal{A})$, then $||\cdot||$ is a C*-norm on \mathcal{A} .

Lemma 2.4. Let \mathcal{I} be an ideal in a normed algebra $(\mathcal{A}, \|\cdot\|)$. Define

$$|(a,x)| := \max\{||a+x||, ||a||\} \ ((a,x) \in \mathcal{A} \times_I \mathcal{I}).$$

Then

- (1) $|\cdot|$ is a norm on $\mathcal{A} \times_I \mathcal{I}$;
- (2) $|\cdot|$ is a uniform norm on $\mathcal{A} \times_I \mathcal{I}$ iff $||\cdot||$ is a uniform norm on \mathcal{A} ;
- (3) Let \mathcal{A} be a *-algebra and \mathcal{I} be a *-ideal in \mathcal{A} . Then $|\cdot|$ is a C*-norm on $\mathcal{A} \times_I \mathcal{I}$ iff $||\cdot||$ is a C*-norm on \mathcal{A} .

Proof. (1) It is easy.

(2) Let $|\cdot|$ be a uniform norm on $\mathcal{A} \times_I \mathcal{I}$. Then

$$||a^2|| = |(a^2, 0)| = |(a, 0)^2| = |(a, 0)|^2 = ||a||^2 \quad (a \in \mathcal{A}).$$

Thus $\|\cdot\|$ is a uniform norm on \mathcal{A} .

Conversely, suppose that $\|\cdot\|$ is a uniform norm on \mathcal{A} . Then

$$|(a,x)^{2}| = |(a^{2},ax + xa + x^{2})| = \max\{||a^{2} + ax + xa + x^{2}||, ||a^{2}||\}$$

= max{||(a + x)^{2}||, ||a^{2}||} = max{||a + x||^{2}, ||a||^{2}}
= max{||(a + x)||, ||a||}^{2} = |(a,x)|^{2}

for all $(a, x) \in \mathcal{A} \times_I \mathcal{I}$. Thus $|\cdot|$ is a uniform norm on $\mathcal{A} \times_I \mathcal{I}$.

(3) This can be proved as per statement (2).

Corollary 2.5. Let \mathcal{I} be a closed ideal in a Banach algebra \mathcal{A} . Then $\mathcal{A} \times_I \mathcal{I}$ is a uniform algebra if and only if \mathcal{A} is a uniform algebra.

Proof. Since $\mathcal{A} \cong \mathcal{A} \times \{0\}$ is a closed subalgebra of $\mathcal{A} \times_I \mathcal{I}$, \mathcal{A} is a uniform algebra whenever $\mathcal{A} \times_I \mathcal{I}$ is a uniform algebra.

Conversely, let $\|\cdot\|$ be a complete uniform norm on \mathcal{A} . Then, by Lemma 2.4(2), $|\cdot|$ is a uniform norm on $\mathcal{A} \times_I \mathcal{I}$. Now we show that $|\cdot|$ is complete. Let $\{(a_n, x_n)\}$ be a Cauchy sequence in $(\mathcal{A} \times_I \mathcal{I}, |\cdot|)$. Then, for each $n \in \mathbb{N}$,

$$\begin{aligned} \|x_n\| &\leq \|a_n + x_n\| + \|a_n\| \\ &\leq 2 \max\{\|a_n + x_n\|, \|a_n\|\} \\ &= 2|(a_n, x_n)|. \end{aligned}$$

This implies that $\{x_n\}$ is a Cauchy sequence in $(\mathcal{I}, \|\cdot\|)$. Since $\|\cdot\|$ is a complete norm on \mathcal{A} and \mathcal{I} is closed in \mathcal{A} , the sequence $\{x_n\}$ converges to some $x \in \mathcal{I}$. By the similar argument, it follows that the sequence $\{a_n\}$ converges to some $a \in \mathcal{A}$. Hence the sequence $\{(a_n, x_n)\}$ converges to (a, x) in $(\mathcal{A} \times_I \mathcal{I}, |\cdot|)$. Thus $|\cdot|$ is a complete uniform norm on $\mathcal{A} \times_I \mathcal{I}$.

3. Gel'fand Space and Shilov Boundary

Throughout this section, \mathcal{A} is a commutative Banach algebra and \mathcal{I} is a closed ideal in \mathcal{A} . In this section, we calculate the Gel'fand space $\Delta(\mathcal{A} \times_I \mathcal{I})$ and the Shilov boundary $\partial(\mathcal{A} \times_I \mathcal{I})$. Note that $\Delta(\mathcal{A} \times_I \mathcal{I})$ and $\partial(\mathcal{A} \times_I \mathcal{I})$ are similar to $\Delta(\mathcal{A} \times_d \mathcal{B})$ and $\partial(\mathcal{A} \times_d \mathcal{B})$ calculated in [4]. First we introduce some notations.

Notations: Let $\varphi \in \Delta(\mathcal{A})$. Define $\varphi^+, \varphi^\diamond : \mathcal{A} \times_I \mathcal{I} \longrightarrow \mathbb{C}$ as $\varphi^+((a, x)) := \varphi(a) + \varphi(x)$ and $\varphi^\diamond((a, x)) := \varphi(a) ((a, x) \in \mathcal{A} \times_I \mathcal{I})$. Let $F \subset \Delta(\mathcal{A})$. Define $F^+ := \{\varphi^+ : \varphi \in F\}$ and $F^\diamond := \{\varphi^\diamond : \varphi \in F\}$.

Theorem 3.1. $\Delta(\mathcal{A} \times_I \mathcal{I}) \cong \Delta^+(\mathcal{A}) \biguplus \Delta^{\diamond}(\mathcal{A}).$

Proof. Let $\tilde{\eta} \in \Delta(\mathcal{A} \times_I \mathcal{I})$. Define $\varphi(a) = \tilde{\eta}((a, 0)) (a \in \mathcal{A})$ and $\psi(x) = \tilde{\eta}((0, x)) (x \in \mathcal{I})$. Then φ and ψ are multiplicative linear maps on \mathcal{A} and \mathcal{I} , respectively such that

 $\widetilde{\eta}((a,x)) = \varphi(a) + \psi(x) \ ((a,x) \in \mathcal{A} \times_I \mathcal{I}).$ Now, for $(a,x), (b,y) \in \mathcal{A} \times_I \mathcal{I},$

$$\begin{split} \widetilde{\eta}[(a,x)(b,y)] &= \widetilde{\eta}((a,x))\widetilde{\eta}((b,y)) \\ \Rightarrow \qquad \widetilde{\eta}((ab,ay+xb+xy)) &= (\varphi(a)+\psi(x))(\varphi(b)+\psi(y)) \\ \Rightarrow \qquad \varphi(ab)+\psi(ay+xb+xy) &= \varphi(a)\varphi(b)+\varphi(a)\psi(y)+\psi(x)\varphi(b)+\psi(x)\psi(y) \\ \Rightarrow \qquad \psi(ay)+\psi(xb) &= \varphi(a)\psi(y)+\psi(x)\varphi(b). \end{split}$$
(3.1)

Now, if $\psi \equiv 0$ on \mathcal{I} , then φ must be nonzero on \mathcal{A} . Therefore $\varphi \in \Delta(\mathcal{A})$. In this case, $\tilde{\eta}((a,x)) = \varphi(a) = \varphi^{\diamond}((a,x))$ $((a,x) \in \mathcal{A} \times_I \mathcal{I})$. Thus $\tilde{\eta} = \varphi^{\diamond} \in \Delta^{\diamond}(\mathcal{A})$. If $\psi \neq 0$ on \mathcal{I} , then there exists $y \in \mathcal{I}$ such that $\psi(y) \neq 0$. Now, taking b = e and a = x in Equation (3.1), we get $\psi(x) = \varphi(x)$ $(x \in \mathcal{I})$. Hence $\psi = \varphi$ on \mathcal{I} . Therefore, $\tilde{\eta}((a,x)) = \varphi(a) + \psi(x) = \varphi(a) + \varphi(x) = \varphi^+((a,x))$ $((a,x) \in \mathcal{A} \times_I \mathcal{I})$. Thus, in this case, $\tilde{\eta} = \varphi^+ \in \Delta^+(\mathcal{A})$. Thus $\Delta(\mathcal{A} \times_I \mathcal{I}) \subset \Delta^+(\mathcal{A}) \biguplus \Delta^{\diamond}(\mathcal{A})$. The reverse inclusion is trivial. Thus $\Delta(\mathcal{A} \times_I \mathcal{I})$ and $\Delta^+(\mathcal{A}) \oiint \Delta^{\diamond}(\mathcal{A})$ are set theoretically equal. By arguments as in [3, Theorem 2.2], it can be shown that they are homeomorphic.

Theorem 3.2. [7, Corollary 3.3.4] Let X be a locally compact Hausdorff space, and let \mathcal{A} be a subalgebra of $C_0(X)$ which strongly separates the points of X. Then a point $x \in X$ belongs to the Shilov boundary of \mathcal{A} if and only if given any open neighbourhood U of x, there exist $f \in \mathcal{A}$ such that $||f|_{X \setminus U}||_{\infty} < ||f|_U||_{\infty}$.

Theorem 3.3. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be a closed ideal of \mathcal{A} . Then $\partial(\mathcal{A} \times_I \mathcal{I}) = \partial^+(\mathcal{A}) \biguplus \partial^{\diamond}(\mathcal{A})$.

Proof. Let $\varphi_0 \in \partial \mathcal{A}$. Let \widetilde{U} be a neighborhood of φ_0^+ in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Then the set $U = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{U} \text{ or } \varphi^\diamond \in \widetilde{U}\}$ is a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Therefore, by Theorem 3.2, there exists $a \in \mathcal{A}$ such that

$$\|\widehat{a}\|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} < \|\widehat{a}\|_{U}\|_{\infty}.$$

If $\varphi^{\diamond} \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{U}$, then $(a, 0)^{\wedge}(\varphi^{\diamond}) = \varphi(a)$. If $\varphi^+ \in \Delta(\mathcal{A} \times_c \mathcal{I}) \setminus \widetilde{U}$, then $\varphi \in \Delta(\mathcal{A}) \setminus U$ and $|(a, 0)^{\wedge}(\varphi^+)| = |\varphi(a)|$. This gives

$$\|(a,0)^{\wedge}|_{\Delta(\mathcal{A}\times_{c}\mathcal{I})\setminus\widetilde{U}}\|_{\infty} = \|\widehat{a}|_{\Delta(\mathcal{A})\setminus U}\|_{\infty}.$$

Also $(a, 0)^{\wedge}(\varphi^+) = \widehat{a}(\varphi) = (a, 0)^{\wedge}(\varphi^{\diamond})$ for every $\varphi \in \Delta(A)$. Hence

$$\|(a,0)^{\wedge}|_{\Delta(\mathcal{A}\times_{c}\mathcal{I})\setminus\widetilde{U}}\|_{\infty} = \|\widehat{a}|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} < \|\widehat{a}|_{U}\|_{\infty} = \|(a,0)^{\wedge}|_{\widetilde{U}}\|_{\infty}.$$

Therefore, by Theorem 3.2, $\varphi_0^+ \in \partial(\mathcal{A} \times_I \mathcal{I})$. Thus $\partial^+(\mathcal{A}) \subset \partial(\mathcal{A} \times_I \mathcal{I})$. By Similar arguments it follows that $\partial^{\diamond}(\mathcal{A}) \subset \partial(\mathcal{A} \times_I \mathcal{I})$.

For the reverse inclusion, let $\widetilde{\varphi_0} \in \partial(\mathcal{A} \times_I \mathcal{I})$. Then $\widetilde{\varphi_0} = \varphi_0^+$ or $\widetilde{\varphi_0} = \varphi_0^\diamond$ for some $\varphi_0 \in \Delta(\mathcal{A})$.

case-I: $\widehat{\varphi_0} = \varphi_0^+$ for some $\varphi_0 \in \Delta(\mathcal{A})$. Let U be a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Then U^+ is a neighborhood of φ_0^+ in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Since $\varphi_0^+ \in \partial(\mathcal{A} \times_I \mathcal{I})$, by Theorem 3.2, there exists $(a, x) \in \mathcal{A} \times_I \mathcal{I}$ such that

$$||(a,x)^{\wedge}|_{\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{+}}||_{\infty} < ||(a,x)^{\wedge}|_{U^{+}}||_{\infty}.$$

Hence

$$\|(a+x)^{\wedge}|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} \leq \|(a,x)^{\wedge}|_{\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{+}}\|_{\infty} < \|(a,x)^{\wedge}|_{U^{+}}\|_{\infty} = \|(a+x)^{\wedge}|_{U}\|_{\infty}.$$

Therefore $\varphi_0 \in \partial \mathcal{A}$.

case-II: $\widetilde{\varphi_0} = \varphi_0^{\diamond}$ for some $\varphi_0 \in \Delta(\mathcal{A})$. Let U be a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Then U^{\diamond} is a neighborhood of φ_0^{\diamond} in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Since $\varphi_0^{\diamond} \in \partial(\mathcal{A} \times_I \mathcal{I})$, by Theorem 3.2, there exists $(a, x) \in \mathcal{A} \times_I \mathcal{I}$ such that

$$\|(a,x)^{\wedge}|_{\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{\diamond}}\|_{\infty} < \|(a,x)^{\wedge}|_{U^{\diamond}}\|_{\infty}.$$

Hence

$$\|a^{\wedge}|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} \leq \|(a,x)^{\wedge}|_{\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{\diamond}}\|_{\infty} < \|(a,x)^{\wedge}|_{U^{\diamond}}\|_{\infty} = \|a^{\wedge}|_{U}\|_{\infty}.$$

Therefore $\varphi_0 \in \partial \mathcal{A}$. Hence $\partial (\mathcal{A} \times_I \mathcal{I}) \subset \partial^+(\mathcal{A}) \biguplus \partial^{\diamond}(\mathcal{A})$.

Theorem 3.4. Let \mathcal{A} be a commutative Banach algebra and \mathcal{I} be closed ideal in \mathcal{A} . Then $\mathcal{A} \times_c \mathcal{I}$ is semisimple if and only if \mathcal{A} is semisimple.

Proof. Let $\mathcal{A} \times_I \mathcal{I}$ be semisimple. Let $a \in \mathcal{A}$ such that $\varphi(a) = 0$ ($\varphi \in \Delta(\mathcal{A})$). Then for any $\tilde{\varphi} \in \Delta(\mathcal{A} \times_I \mathcal{I})$, $\tilde{\varphi}((a, 0)) = 0$. Since $\mathcal{A} \times_I \mathcal{I}$ is semisimple, (a, 0) = (0, 0) gives a = 0. Thus \mathcal{A} is semisimple.

Conversely, suppose that \mathcal{A} is semisimple. Let $(a, x) \in \mathcal{A} \times_I \mathcal{I}$ be such that $\tilde{\varphi}((a, x)) = 0$ ($\tilde{\varphi} \in \Delta(\mathcal{A} \times_I \mathcal{I})$). Let $\varphi \in \Delta(\mathcal{A})$. Then $\varphi^+, \varphi^{\diamond} \in \Delta(\mathcal{A} \times_I \mathcal{I})$. So that $\varphi^+((a, x)) = \varphi^{\diamond}((a, x)) = 0$. Implies that $\varphi(a) = \varphi(x) = 0$. Since $\varphi \in \Delta(\mathcal{A})$ is arbitrary and \mathcal{A} is semisimple, we get a = x = 0. Hence $\mathcal{A} \times_I \mathcal{I}$ is semisimple. \Box

Acknowledgement

Author is thankful to Prof. H. V. Dedania, Department of mathematics, Sardar Patel University, Vallabh Vidhyanagar, Gujarat for suggesting the product name *I*product and for various other mathematical suggestions.

References

- B. A. Barnes, The properties of *-regularity and uniqueness of C*-norm in a general *-algebra, Trans. American Math. Soc., 279 (2) (1983), 841-859.
- [2] S. J. Bhatt and H. V. Dedania, Uniqueness of uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci.(Math. Sci.), 105 (4)(1995), 405-409.
- [3] H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of Banach algebras, Annals of Funct. Anal., 5 (1) (2014), 51-55.
- [4] H. V. Dedania and H. J. Kanani, Characterization of Gelfan Space of the Banach Algebra $\mathcal{A} \times_d \mathcal{B}$ with Direct-sum Product, Mathematics Today, 34 (A) (2018), 188-194.
- [5] H. V. Dedania and H. J. Kanani, Gelfand Theory of the Commutative Banach algebras $\mathcal{A} \times_c \mathcal{I}$ with the Convolution Product, Int. Journal of Math. and its Appli., 7 (4) (2019), 193-199.
- [6] H. J. Kanani, Spectral and uniqueness properties in various Banach algebra products, Sardar Patel University, 2016.
- [7] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, New York, 2009.