

The Gel'fand Space and the Shilov Boundary of the Banach algebra $\mathcal{A} \times_I \mathcal{I}$ with I-product

Dr. H. J. Kanani

Department of Mathematics, Government Science College, Gariyadhar, Dist. Bhavnagar, Gujarat, India.

ABSTRACT

Let A be a Commutative Banach algebra and $\mathcal I$ be a closed ideal in A . We can define so called I-product on $A \times I$, which makes it a commutative Banach algebra with some suitable norm. It is denoted by $A \times I \mathcal{I}$. In this paper, the Gel'fand space and the Shilov boundary of $A \times_I \mathcal{I}$ is characterised in terms of that of A and I.

2020 Mathematics Subject Classification. Primary 46H05; Secondary 46K05.

KEYWORDS

I-product, Gel'fand space, Shilov boundary and semisimplicity.

1. Introduction

Let A and B be commutative Banach algebras. Then the Gelfand space and the Shilov boundary of the cartesian product $A \times B$ are characterized in [3]. If B is a closed subalgebra of A, then these two objects of direct-sum product $A \times_d B$ are characterized in [4]. Similarly, if $\mathcal I$ is a closed ideal of $\mathcal A$, then these objects of the convolution product $\mathcal{A} \times_{c} \mathcal{I}$ are characterized in [5]. Here we define another product on $\mathcal{A} \times \mathcal{I}$ motivated from the direct-sum product. Let A be an algebra and I be an ideal in A. Then $A \times_I I$ is an algebra with pointwise linear operations and the I- product defined as

$$
(a, x)(b, y) = (ab, ay + xb + xy) \quad ((a, x), (b, y) \in \mathcal{A} \times_I \mathcal{I}).
$$

It is easy to verify that $A \times I \mathcal{I}$ is commutative (resp. unital) iff A is commutative (resp. unital). If A is a normed algebra, then $A \times_I \mathcal{I}$ is a normed algebra with the norm $||(a, x)||_1 = ||a|| + ||x|| ((a, x) \in \mathcal{A} \times_I \mathcal{I})$. Further, if \mathcal{A} is a Banach algebra and I is a closed ideal in A, then $(A \times_I \mathcal{I}, \|\cdot\|_1)$ is a Banach algebra too.

Remark 1.1. Let $\|\cdot\|$ be a norm on an algebra A and I be an ideal of A. Let $||(a, x)||_{\infty} = \max{||a||, ||x||}$ ((a, x) ∈ $\mathcal{A} \times_I \mathcal{I}$). Then $||\cdot||_{\infty}$ may not be an algebra norm on $\mathcal{A} \times_I \mathcal{I}$.

CONTACT Author Email:hitenmaths69@gmail.com

Article History

To cite this paper

Received : 04 May 2024; Revised : 28 May 2024; Accepted : 09 June 2024; Published : 29 June 2024

Dr. H.J. Kanani (2024). The Gel'fand Space and the Shilov Boundary of the Banach algebra $\mathcal{A}\times_1\mathcal{I}$ with I-product. *International Journal of Mathematics, Statistics and Operations Research.* 4(1), 77-81.

2. Basic Results

Throughout this paper, A is an algebra over the complex field $\mathbb C$ and $\mathcal I$ is an ideal in A. Let \mathcal{A}_{-1} denote the set of all quasi invertible elements of \mathcal{A} . If \mathcal{A} is unital, then \mathcal{A}^{-1} is the set of all invertible elements of A. Further, $\sigma_{\mathcal{A}}(a)$ and $r_{\mathcal{A}}(a)$ denote respectively the spectrum and the spectral radius of a in A . Then we have the following.

Proposition 2.1. Let $(a, x) \in A \times_I \mathcal{I}$. Then

(1) $(a, x) \in (\mathcal{A} \times_I \mathcal{I})^{-1}$ iff $a + x, a \in \mathcal{A}^{-1}$; (2) $(a, x) \in (\mathcal{A} \times_I \mathcal{I})_{-1}$ iff $a + x, a \in \mathcal{A}_{-1}$; (3) $\sigma_{\mathcal{A}\times I}(\mathcal{A},x) = \sigma_{\mathcal{A}}(a+x) \cup \sigma_{\mathcal{A}}(a);$ (4) $r_{A\times I}(\mathbf{a}, x) = \max\{r_A(\mathbf{a}+x), r_A(\mathbf{a})\}.$

Proposition 2.2. Let A be a normed algebra and I be a closed ideal in A . Then $A \times_I \mathcal{I}$ has a left approximate identity iff A has a left approximate identity. (Similar results are true for right, bounded left, bounded right approximate identity.)

Proof. Let $\{(e_{\alpha}, x_{\alpha})\}_{\alpha \in \Lambda}$ be a left approximate identity in $\mathcal{A} \times_I \mathcal{I}$ and $a \in \mathcal{A}$. Then

 $||e_{\alpha}a - a|| \le ||e_{\alpha}a - a|| + ||x_{\alpha}a|| = ||(e_{\alpha}, x_{\alpha})(a, 0) - (a, 0)||_1.$

Thus $\{e_{\alpha}\}\$ is a left approximate identity for A.

Conversely, suppose that A has a left approximate identity $\{e_{\alpha}\}_{{\alpha}\in{\Lambda}}$. Then,

$$
\|(e_{\alpha},0)(a,x)-(a,x)\|_1 = \|(e_{\alpha}a,e_{\alpha}x)-(a,x)\|_1 = \|(e_{\alpha}a-a)\| + \|(e_{\alpha}x-x)\|
$$

for every $(a, x) \in \mathcal{A} \times_I \mathcal{I}$. Thus $\{(e_\alpha, 0)\}_{\alpha \in \Lambda}$ is a left approximate identity for $\mathcal{A} \times_I \mathcal{I}$. \Box

Definition 2.3. Let A be an algebra and $\|\cdot\|$ be a norm on A. Then

(1) $\|\cdot\|$ is a uniform norm if $\|a^2\| = \|a\|^2$ $(a \in \mathcal{A})$.

- (2) A is a uniform algebra if it admits a complete uniform norm.
- (3) If A is a $*$ -algebra and $||a^*a|| = ||a||^2$ $(a \in \mathcal{A})$, then $|| \cdot ||$ is a C^* -norm on A.

Lemma 2.4. Let $\mathcal I$ be an ideal in a normed algebra $(\mathcal A, \|\cdot\|)$. Define

$$
|(a, x)| := \max\{||a + x||, ||a||\} \ ((a, x) \in \mathcal{A} \times_I \mathcal{I}).
$$

Then

- $(1) \mid \cdot \mid$ is a norm on $A \times_I \mathcal{I}$;
- (2) $|\cdot|$ is a uniform norm on $A \times_I \mathcal{I}$ iff $||\cdot||$ is a uniform norm on A;
- (3) Let A be a $*$ -algebra and I be a $*$ -ideal in A. Then $|\cdot|$ is a C^* -norm on $A \times_I \mathcal{I}$ iff $∥ ⋅ ∥ is a C[*]$ -norm on A.

Proof. (1) It is easy.

(2) Let $|\cdot|$ be a uniform norm on $\mathcal{A} \times_I \mathcal{I}$. Then

$$
||a^2|| = |(a^2, 0)| = |(a, 0)^2| = |(a, 0)|^2 = ||a||^2 \quad (a \in \mathcal{A}).
$$

Thus $\|\cdot\|$ is a uniform norm on \mathcal{A} .

Conversely, suppose that $\|\cdot\|$ is a uniform norm on A. Then

$$
|(a,x)^2| = |(a^2, ax + xa + x^2)| = \max\{| |a^2 + ax + xa + x^2||, ||a^2|| \}
$$

= $\max\{||(a+x)^2||, ||a^2||\} = \max\{| |a+x||^2, ||a||^2 \}$
= $\max\{||(a+x)||, ||a||\}^2 = |(a,x)|^2$

for all $(a, x) \in \mathcal{A} \times_I \mathcal{I}$. Thus $|\cdot|$ is a uniform norm on $\mathcal{A} \times_I \mathcal{I}$.

(3) This can be proved as per statement (2).

Corollary 2.5. Let $\mathcal I$ be a closed ideal in a Banach algebra $\mathcal A$. Then $\mathcal A \times_I \mathcal I$ is a uniform algebra if and only if A is a uniform algebra.

Proof. Since $\mathcal{A} \cong \mathcal{A} \times \{0\}$ is a closed subalgebra of $\mathcal{A} \times_I \mathcal{I}$, \mathcal{A} is a uniform algebra whenever $A \times_I \mathcal{I}$ is a uniform algebra.

Conversely, let $\|\cdot\|$ be a complete uniform norm on A. Then, by Lemma 2.4(2), $|\cdot|$ is a uniform norm on $A \times_I \mathcal{I}$. Now we show that $|\cdot|$ is complete. Let $\{(a_n, x_n)\}\)$ be a Cauchy sequence in $(\mathcal{A} \times_I \mathcal{I}, |\cdot|)$. Then, for each $n \in \mathbb{N}$,

$$
||x_n|| \le ||a_n + x_n|| + ||a_n||
$$

\n
$$
\le 2 \max\{||a_n + x_n||, ||a_n||\}
$$

\n
$$
= 2|(a_n, x_n)|.
$$

This implies that $\{x_n\}$ is a Cauchy sequence in $(\mathcal{I}, \|\cdot\|)$. Since $\|\cdot\|$ is a complete norm on A and I is closed in A, the sequence $\{x_n\}$ converges to some $x \in \mathcal{I}$. By the similar argument, it follows that the sequence $\{a_n\}$ converges to some $a \in \mathcal{A}$. Hence the sequence $\{(a_n, x_n)\}$ converges to (a, x) in $(\mathcal{A} \times_I \mathcal{I}, |\cdot|)$. Thus $|\cdot|$ is a complete uniform norm on $\mathcal{A} \times_I \mathcal{I}$. uniform norm on $A \times_I \mathcal{I}$.

3. Gel'fand Space and Shilov Boundary

Throughout this section, A is a commutative Banach algebra and $\mathcal I$ is a closed ideal in A. In this section, we calculate the Gel'fand space $\Delta(\mathcal{A} \times_I \mathcal{I})$ and the Shilov boundary $\partial(A \times_I \mathcal{I})$. Note that $\Delta(A \times_I \mathcal{I})$ and $\partial(A \times_I \mathcal{I})$ are similar to $\Delta(A \times_I \mathcal{B})$ and $\partial(\mathcal{A} \times_d \mathcal{B})$ calculated in [4]. First we introduce some notations.

Notations: Let $\varphi \in \Delta(\mathcal{A})$. Define $\varphi^+, \varphi^\diamond : \mathcal{A} \times_I \mathcal{I} \longrightarrow \mathbb{C}$ as $\varphi^+((a, x)) := \varphi(a) + \varphi(x)$ and $\varphi^{\diamond}((a, x)) := \varphi(a)$ $((a, x) \in \mathcal{A} \times_I \mathcal{I})$. Let $F \subset \Delta(\mathcal{A})$. Define $F^+ := {\varphi^+ : \varphi \in F}$ and $F^{\diamond} := {\{\varphi^{\diamond} : \varphi \in F\}}.$

Theorem 3.1. $\Delta(\mathcal{A} \times_I \mathcal{I}) \cong \Delta^+(\mathcal{A}) \cup \Delta^{\diamond}(\mathcal{A})$.

Proof. Let $\widetilde{\eta} \in \Delta(\mathcal{A} \times_I \mathcal{I})$. Define $\varphi(a) = \widetilde{\eta}((a, 0))$ $(a \in \mathcal{A})$ and $\psi(x) = \widetilde{\eta}((0, x))$ $(x \in \mathcal{I})$ I). Then φ and ψ are multiplicative linear maps on A and I, respectively such that

 \Box

 $\widetilde{\eta}((a,x)) = \varphi(a) + \psi(x)$ $((a,x) \in \mathcal{A} \times_I \mathcal{I})$. Now, for (a,x) , $(b,y) \in \mathcal{A} \times_I \mathcal{I}$,

$$
\widetilde{\eta}[(a, x)(b, y)] = \widetilde{\eta}((a, x))\widetilde{\eta}((b, y))
$$
\n
$$
\Rightarrow \qquad \widetilde{\eta}((ab, ay + xb + xy)) = (\varphi(a) + \psi(x))(\varphi(b) + \psi(y))
$$
\n
$$
\Rightarrow \qquad \varphi(ab) + \psi(ay + xb + xy) = \varphi(a)\varphi(b) + \varphi(a)\psi(y) + \psi(x)\varphi(b) + \psi(x)\psi(y)
$$
\n
$$
\Rightarrow \qquad \psi(ay) + \psi(xb) = \varphi(a)\psi(y) + \psi(x)\varphi(b). \tag{3.1}
$$

Now, if $\psi \equiv 0$ on *I*, then φ must be nonzero on *A*. Therefore $\varphi \in \Delta(\mathcal{A})$. In this case, $\tilde{\eta}((a,x)) = \varphi(a) = \varphi^{\diamond}((a,x))$ $((a,x) \in \mathcal{A} \times_I \mathcal{I})$. Thus $\tilde{\eta} = \varphi^{\diamond} \in \Delta^{\diamond}(\mathcal{A})$. If $\psi \neq 0$ on *I*, then there exists $y \in I$ such that $\psi(y) \neq 0$. Now, taking $b = e$ and $a = x$ in Equation (3.1), we get $\psi(x) = \varphi(x)$ ($x \in \mathcal{I}$). Hence $\psi = \varphi$ on \mathcal{I} . Therefore, $\widetilde{\eta}((a,x)) = \varphi(a) + \psi(x) = \varphi(a) + \varphi(x) = \varphi^+((a,x))$ $((a,x) \in \mathcal{A} \times_I \mathcal{I})$. Thus, in this case, $\widetilde{\eta} = \varphi^+ \in \Delta^+(\mathcal{A})$. Thus $\Delta(\mathcal{A} \times_I \mathcal{I}) \subset \Delta^+(\mathcal{A}) \cup \Delta^{\diamond}(\mathcal{A})$. The reverse inclusion is trivial. Thus $\Delta(\mathcal{A} \times_I \mathcal{I})$ and $\Delta^+(\mathcal{A}) \cup \Delta^{\diamond}(\mathcal{A})$ are set theoretically equal. By arguments as in [3, Theorem 2.2], it can be shown that they are homeomorphic.

Theorem 3.2. [7, Corollary 3.3.4] Let X be a locally compact Hausdorff space, and let A be a subalgebra of $C_0(X)$ which strongly separates the points of X. Then a point $x \in X$ belongs to the Shilov boundary of A if and only if given any open neighbourhood U of x, there exist $f \in \mathcal{A}$ such that $||f||_{X\setminus U}||_{\infty} < ||f||_{U}||_{\infty}$.

Theorem 3.3. Let A be a commutative Banach algebra and I be a closed ideal of A . Then $\partial(\mathcal{A} \times_I \mathcal{I}) = \partial^+(\mathcal{A}) \biguplus \partial^{\diamond}(\mathcal{A})$.

Proof. Let $\varphi_0 \in \partial A$. Let \tilde{U} be a neighborhood of φ_0^+ in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Then the set $U = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{U} \text{ or } \varphi^{\diamond} \in \widetilde{U} \}$ is a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Therefore, by Theorem 3.2, there exists $a \in \mathcal{A}$ such that

$$
\|\widehat{a}\|_{\Delta(\mathcal{A})\setminus U}\|_{\infty} < \|\widehat{a}|_{U}\|_{\infty}.
$$

If $\varphi^{\diamond} \in \Delta(\mathcal{A} \times_{c} \mathcal{I}) \backslash \widetilde{U}$, then $(a, 0)^{\wedge}(\varphi^{\diamond}) = \varphi(a)$. If $\varphi^{+} \in \Delta(\mathcal{A} \times_{c} \mathcal{I}) \backslash \widetilde{U}$, then $\varphi \in \Delta(\mathcal{A}) \backslash U$ and $|(a, 0)^{\wedge}(\varphi^+)| = |\varphi(a)|$. This gives

$$
\|(a,0)^{\wedge}\|_{\Delta(\mathcal{A}\times_c\mathcal{I})\setminus\widetilde{U}}\|_{\infty}=\|\widehat{a}\|_{\Delta(\mathcal{A})\setminus U}\|_{\infty}.
$$

Also $(a, 0)^{\wedge}(\varphi^+) = \widehat{a}(\varphi) = (a, 0)^{\wedge}(\varphi^{\diamond})$ for every $\varphi \in \Delta(A)$. Hence

$$
||(a,0)^{\wedge}||_{\Delta(\mathcal{A}\times_{c}\mathcal{I})\backslash\widetilde{U}}||_{\infty}=||\widehat{a}||_{\Delta(\mathcal{A})\backslash U}||_{\infty}<||\widehat{a}|_{U}||_{\infty}=||(a,0)^{\wedge}|\widetilde{U}||_{\infty}.
$$

Therefore, by Theorem 3.2, $\varphi_0^+ \in \partial(\mathcal{A} \times_I \mathcal{I})$. Thus $\partial^+(\mathcal{A}) \subset \partial(\mathcal{A} \times_I \mathcal{I})$. By Similar arguments it follows that $\partial^{\diamond}(A) \subset \partial(A \times_I \mathcal{I}).$

For the reverse inclusion, let $\widetilde{\varphi_0} \in \partial(\mathcal{A} \times_I \mathcal{I})$. Then $\widetilde{\varphi_0} = \varphi_0^+$ or $\widetilde{\varphi_0} = \varphi_0^{\circ}$ for some $\varphi_0 \in \Delta(\mathcal{A}).$

case-I: $\widetilde{\varphi_0} = \varphi_0^+$ for some $\varphi_0 \in \Delta(\mathcal{A})$. Let U be a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Then U⁺ is a neighborhood of φ_0^+ in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Since $\varphi_0^+ \in \partial(\mathcal{A} \times_I \mathcal{I})$, by Theorem 3.2, there exists $(a, x) \in \mathcal{A} \times_I \mathcal{I}$ such that

$$
|| (a, x)^{\wedge} |_{\Delta(\mathcal{A} \times_{I} \mathcal{I}) \setminus U^{+}} ||_{\infty} < || (a, x)^{\wedge} |_{U^{+}} ||_{\infty}.
$$

Hence

$$
||(a+x)^{\wedge}|\Delta(\mathcal{A})\setminus U||_{\infty} \leq ||(a,x)^{\wedge}|\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{+}||_{\infty} < ||(a,x)^{\wedge}|_{U^{+}}||_{\infty} = ||(a+x)^{\wedge}|_{U}||_{\infty}.
$$

Therefore $\varphi_0 \in \partial A$.

case-II : $\widetilde{\varphi_0} = \varphi_0^{\circ}$ for some $\varphi_0 \in \Delta(\mathcal{A})$. Let U be a neighborhood of φ_0 in $\Delta(\mathcal{A})$. Then U^{\diamond} is a neighborhood of φ_0^{\diamond} in $\Delta(\mathcal{A} \times_I \mathcal{I})$. Since $\varphi_0^{\diamond} \in \partial(\mathcal{A} \times_I \mathcal{I})$, by Theorem 3.2, there exists $(a, x) \in \mathcal{A} \times_I \mathcal{I}$ such that

$$
|| (a, x)^{\wedge} |_{\Delta(\mathcal{A} \times_{I} \mathcal{I}) \setminus U^{\circ}} ||_{\infty} < || (a, x)^{\wedge} |_{U^{\circ}} ||_{\infty}.
$$

Hence

$$
||a^{\wedge}|\Delta(\mathcal{A})\setminus U||_{\infty} \leq ||(a,x)^{\wedge}|\Delta(\mathcal{A}\times_{I}\mathcal{I})\setminus U^{\circ}||_{\infty} < ||(a,x)^{\wedge}|_{U^{\circ}}||_{\infty} = ||a^{\wedge}|_{U}||_{\infty}.
$$

Therefore $\varphi_0 \in \partial A$. Hence $\partial(\mathcal{A} \times_I \mathcal{I}) \subset \partial^+(\mathcal{A}) \cup \partial^{\diamond}(\mathcal{A})$.

Theorem 3.4. Let $\mathcal A$ be a commutative Banach algebra and $\mathcal I$ be closed ideal in $\mathcal A$. Then $A \times_c I$ is semisimple if and only if A is semisimple.

Proof. Let $A \times_I \mathcal{I}$ be semisimple. Let $a \in \mathcal{A}$ such that $\varphi(a) = 0 \ (\varphi \in \Delta(\mathcal{A}))$. Then for any $\widetilde{\varphi} \in \Delta(\mathcal{A} \times_I \mathcal{I}), \widetilde{\varphi}((a, 0)) = 0.$ Since $\mathcal{A} \times_I \mathcal{I}$ is semisimple, $(a, 0) = (0, 0)$ gives $a = 0$. Thus A is semisimple.

Conversely, suppose that A is semisimple. Let $(a, x) \in A \times I$ be such that $\widetilde{\varphi}((a,x)) = 0 \; (\widetilde{\varphi} \in \Delta(\mathcal{A} \times_I \mathcal{I}))$. Let $\varphi \in \Delta(\mathcal{A})$. Then $\varphi^+, \varphi^{\diamond} \in \Delta(\mathcal{A} \times_I \mathcal{I})$. So that $\varphi^+((a, x)) = \varphi^{\diamond}((a, x)) = 0$. Implies that $\varphi(a) = \varphi(x) = 0$. Since $\varphi \in \Delta(\mathcal{A})$ is arbitrary and $\mathcal A$ is semisimple, we get $a = x = 0$. Hence $\mathcal A \times_I \mathcal I$ is semisimple. arbitrary and A is semisimple, we get $a = x = 0$. Hence $A \times I$ is semisimple.

Acknowledgement

Author is thankful to Prof. H. V. Dedania, Department of mathematics, Sardar Patel University, Vallabh Vidhyanagar, Gujarat for suggesting the product name Iproduct and for various other mathematical suggestions.

References

- [1] B. A. Barnes, The properties of *-regularity and uniqueness of C^* -norm in a general ∗-algebra, Trans. American Math. Soc., 279 (2) (1983), 841-859.
- [2] S. J. Bhatt and H. V. Dedania, Uniqueness of uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci.(Math. Sci.), 105 (4)(1995), 405-409.
- [3] H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of Banach algebras, Annals of Funct. Anal., 5 (1) (2014), 51-55.
- [4] H. V. Dedania and H. J. Kanani, Characterization of Gelfan Space of the Banach Algebra $A \times_d B$ with Direct-sum Product, Mathematics Today, 34 (A) (2018), 188-194.
- [5] H. V. Dedania and H. J. Kanani, Gelfand Theory of the Commutative Banach algebras $A \times_c I$ with the Convolution Product, Int. Journal of Math. and its Appli., 7 (4) (2019), 193-199.
- [6] H. J. Kanani, Spectral and uniqueness properties in various Banach algebra products, Sardar Patel University, 2016.
- [7] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, New York, 2009.

 \Box