
International Journal of Mathematics, Statistics and Operations Research
Vol. 4; Number 1; 2024, pp. 77-81
https://doi.org/10.47509/IJMSOR.2024.v04i01.06

Article History
Received : 04 May 2024; Revised : 28 May 2024; Accepted : 09 June 2024; Published : 29 June 2024

To cite this paper
Dr. H.J. Kanani (2024). The Gel’fand Space and the Shilov Boundary of the Banach algebra A×II with I-product. 
International Journal of Mathematics, Statistics and Operations Research. 4(1), 77-81.

ARF INDIA
Academic Open Access Publishing
www.arfjournals.com

INTERNATIONAL JOURNAL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH

VOL NO. ..., ISSUE ... ,PAGE NO.# YEAR 2024

The Gel’fand Space and the Shilov Boundary of the Banach algebra

A ×I I with I-product

Dr. H. J. Kanani

Department of Mathematics, Government Science College, Gariyadhar, Dist. Bhavnagar,
Gujarat, India.

ARTICLE HISTORY

Compiled August 16, 2024

ABSTRACT
Let A be a Commutative Banach algebra and I be a closed ideal in A. We can
define so called I-product on A× I, which makes it a commutative Banach algebra
with some suitable norm. It is denoted by A×I I. In this paper, the Gel’fand space
and the Shilov boundary of A×I I is characterised in terms of that of A and I.
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1. Introduction

Let A and B be commutative Banach algebras. Then the Gelfand space and the Shilov
boundary of the cartesian product A × B are characterized in [3]. If B is a closed
subalgebra of A, then these two objects of direct-sum product A×dB are characterized
in [4]. Similarly, if I is a closed ideal of A, then these objects of the convolution product
A ×c I are characterized in [5]. Here we define another product on A × I motivated
from the direct-sum product. Let A be an algebra and I be an ideal in A. Then A×I I
is an algebra with pointwise linear operations and the I- product defined as

(a, x)(b, y) = (ab, ay + xb+ xy) ((a, x), (b, y) ∈ A×I I).

It is easy to verify that A ×I I is commutative (resp. unital) iff A is commutative
(resp. unital). If A is a normed algebra, then A ×I I is a normed algebra with the
norm ∥(a, x)∥1 = ∥a∥ + ∥x∥ ((a, x) ∈ A ×I I). Further, if A is a Banach algebra and
I is a closed ideal in A, then (A×I I, ∥ · ∥1) is a Banach algebra too.

Remark 1.1. Let ∥ · ∥ be a norm on an algebra A and I be an ideal of A. Let
∥(a, x)∥∞ = max{∥a∥, ∥x∥} ((a, x) ∈ A×I I). Then ∥ ·∥∞ may not be an algebra norm
on A×I I.
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2. Basic Results

Throughout this paper, A is an algebra over the complex field C and I is an ideal in
A. Let A−1 denote the set of all quasi invertible elements of A. If A is unital, then A−1

is the set of all invertible elements of A. Further, σA(a) and rA(a) denote respectively
the spectrum and the spectral radius of a in A. Then we have the following.

Proposition 2.1. Let (a, x) ∈ A×I I. Then

(1) (a, x) ∈ (A×I I)−1 iff a+ x, a ∈ A−1;
(2) (a, x) ∈ (A×I I)−1 iff a+ x, a ∈ A−1;
(3) σA×II((a, x)) = σA(a+ x) ∪ σA(a);
(4) rA×II((a, x)) = max{rA(a+ x), rA(a)}.

Proposition 2.2. Let A be a normed algebra and I be a closed ideal in A. Then
A×I I has a left approximate identity iff A has a left approximate identity. (Similar
results are true for right, bounded left, bounded right approximate identity.)

Proof. Let {(eα, xα)}α∈Λ be a left approximate identity in A×I I and a ∈ A. Then

∥eαa− a∥ ≤ ∥eαa− a∥+ ∥xαa∥ = ∥(eα, xα)(a, 0)− (a, 0)∥1.

Thus {eα} is a left approximate identity for A.
Conversely, suppose that A has a left approximate identity {eα}α∈Λ. Then,

∥(eα, 0)(a, x)− (a, x)∥1 = ∥(eαa, eαx)− (a, x)∥1 = ∥(eαa− a)∥+ ∥(eαx− x)∥

for every (a, x) ∈ A×II. Thus {(eα, 0)}α∈Λ is a left approximate identity forA×II.

Definition 2.3. Let A be an algebra and ∥ · ∥ be a norm on A. Then

(1) ∥ · ∥ is a uniform norm if ∥a2∥ = ∥a∥2 (a ∈ A).
(2) A is a uniform algebra if it admits a complete uniform norm.
(3) If A is a ∗-algebra and ∥a∗a∥ = ∥a∥2(a ∈ A), then ∥ · ∥ is a C∗-norm on A.

Lemma 2.4. Let I be an ideal in a normed algebra (A, ∥ · ∥). Define

|(a, x)| := max{∥a+ x∥, ∥a∥} ((a, x) ∈ A×I I).

Then

(1) | · | is a norm on A×I I;
(2) | · | is a uniform norm on A×I I iff ∥ · ∥ is a uniform norm on A;
(3) Let A be a ∗-algebra and I be a ∗-ideal in A. Then | · | is a C∗-norm on A×I I

iff ∥ · ∥ is a C∗-norm on A.

Proof. (1) It is easy.
(2) Let | · | be a uniform norm on A×I I. Then

∥a2∥ = |(a2, 0)| = |(a, 0)2| = |(a, 0)|2 = ∥a∥2 (a ∈ A).

Thus ∥ · ∥ is a uniform norm on A.
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Conversely, suppose that ∥ · ∥ is a uniform norm on A. Then

|(a, x)2| = |(a2, ax+ xa+ x2)| = max{∥a2 + ax+ xa+ x2∥, ∥a2∥}
= max{∥(a+ x)2∥, ∥a2∥} = max{∥a+ x∥2, ∥a∥2}
= max{∥(a+ x)∥, ∥a∥}2 = |(a, x)|2

for all (a, x) ∈ A×I I. Thus | · | is a uniform norm on A×I I.
(3) This can be proved as per statement (2).

Corollary 2.5. Let I be a closed ideal in a Banach algebra A. Then A ×I I is a
uniform algebra if and only if A is a uniform algebra.

Proof. Since A ∼= A × {0} is a closed subalgebra of A ×I I, A is a uniform algebra
whenever A×I I is a uniform algebra.

Conversely, let ∥ · ∥ be a complete uniform norm on A. Then, by Lemma 2.4(2), | · |
is a uniform norm on A×I I. Now we show that | · | is complete. Let {(an, xn)} be a
Cauchy sequence in (A×I I, | · |). Then, for each n ∈ N,

∥xn∥ ≤ ∥an + xn∥+ ∥an∥
≤ 2max{∥an + xn∥, ∥an∥}
= 2|(an, xn)|.

This implies that {xn} is a Cauchy sequence in (I, ∥ · ∥). Since ∥ · ∥ is a complete
norm on A and I is closed in A, the sequence {xn} converges to some x ∈ I. By the
similar argument, it follows that the sequence {an} converges to some a ∈ A. Hence
the sequence {(an, xn)} converges to (a, x) in (A ×I I, | · |). Thus | · | is a complete
uniform norm on A×I I.

3. Gel’fand Space and Shilov Boundary

Throughout this section, A is a commutative Banach algebra and I is a closed ideal
in A. In this section, we calculate the Gel’fand space ∆(A ×I I) and the Shilov
boundary ∂(A ×I I). Note that ∆(A ×I I) and ∂(A ×I I) are similar to ∆(A ×d B)
and ∂(A×d B) calculated in [4]. First we introduce some notations.

Notations: Let φ ∈ ∆(A). Define φ+, φ⋄ : A×I I −→ C as φ+((a, x)) := φ(a)+φ(x)
and φ⋄((a, x)) := φ(a) ((a, x) ∈ A ×I I). Let F ⊂ ∆(A). Define F+ := {φ+ : φ ∈ F}
and F ⋄ := {φ⋄ : φ ∈ F}.

Theorem 3.1. ∆(A×I I) ∼= ∆+(A)
⊎

∆⋄(A).

Proof. Let η̃ ∈ ∆(A×I I). Define φ(a) = η̃((a, 0)) (a ∈ A) and ψ(x) = η̃((0, x)) (x ∈
I). Then φ and ψ are multiplicative linear maps on A and I, respectively such that
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η̃((a, x)) = φ(a) + ψ(x) ((a, x) ∈ A×I I). Now, for (a, x), (b, y) ∈ A×I I,

η̃[(a, x)(b, y)] = η̃((a, x))η̃((b, y))

⇒ η̃((ab, ay + xb+ xy)) = (φ(a) + ψ(x))(φ(b) + ψ(y))

⇒ φ(ab) + ψ(ay + xb+ xy) = φ(a)φ(b) + φ(a)ψ(y) + ψ(x)φ(b) + ψ(x)ψ(y)

⇒ ψ(ay) + ψ(xb) = φ(a)ψ(y) + ψ(x)φ(b). (3.1)

Now, if ψ ≡ 0 on I, then φ must be nonzero on A. Therefore φ ∈ ∆(A). In this
case, η̃((a, x)) = φ(a) = φ⋄((a, x)) ((a, x) ∈ A ×I I). Thus η̃ = φ⋄ ∈ ∆⋄(A). If
ψ ̸= 0 on I, then there exists y ∈ I such that ψ(y) ̸= 0. Now, taking b = e and
a = x in Equation (3.1), we get ψ(x) = φ(x) (x ∈ I). Hence ψ = φ on I. Therefore,
η̃((a, x)) = φ(a) + ψ(x) = φ(a) + φ(x) = φ+((a, x)) ((a, x) ∈ A ×I I). Thus, in this
case, η̃ = φ+ ∈ ∆+(A). Thus ∆(A×I I) ⊂ ∆+(A)

⊎
∆⋄(A). The reverse inclusion is

trivial. Thus ∆(A×I I) and ∆+(A)
⊎

∆⋄(A) are set theoretically equal. By arguments
as in [3, Theorem 2.2], it can be shown that they are homeomorphic.

Theorem 3.2. [7, Corollary 3.3.4] Let X be a locally compact Hausdorff space, and
let A be a subalgebra of C0(X) which strongly separates the points of X. Then a point
x ∈ X belongs to the Shilov boundary of A if and only if given any open neighbourhood
U of x, there exist f ∈ A such that ∥f |X\U∥∞ < ∥f |U∥∞.

Theorem 3.3. Let A be a commutative Banach algebra and I be a closed ideal of A.
Then ∂(A×I I) = ∂+(A)

⊎
∂⋄(A).

Proof. Let φ0 ∈ ∂A. Let Ũ be a neighborhood of φ+
0 in ∆(A ×I I). Then the set

U = {φ ∈ ∆(A) : φ+ ∈ Ũ or φ⋄ ∈ Ũ} is a neighborhood of φ0 in ∆(A). Therefore, by
Theorem 3.2, there exists a ∈ A such that

∥â|∆(A)\U∥∞ < ∥â|U∥∞.

If φ⋄ ∈ ∆(A×cI)\Ũ , then (a, 0)∧(φ⋄) = φ(a). If φ+ ∈ ∆(A×cI)\Ũ , then φ ∈ ∆(A)\U
and |(a, 0)∧(φ+)| = |φ(a)|. This gives

∥(a, 0)∧|∆(A×cI)\Ũ∥∞ = ∥â|∆(A)\U∥∞.

Also (a, 0)∧(φ+) = â(φ) = (a, 0)∧(φ⋄) for every φ ∈ ∆(A). Hence

∥(a, 0)∧|∆(A×cI)\Ũ∥∞ = ∥â|∆(A)\U∥∞ < ∥â|U∥∞ = ∥(a, 0)∧|Ũ∥∞.

Therefore, by Theorem 3.2, φ+
0 ∈ ∂(A ×I I). Thus ∂+(A) ⊂ ∂(A ×I I). By Similar

arguments it follows that ∂⋄(A) ⊂ ∂(A×I I).
For the reverse inclusion, let φ̃0 ∈ ∂(A ×I I). Then φ̃0 = φ+

0 or φ̃0 = φ⋄
0 for some

φ0 ∈ ∆(A).
case-I : φ̃0 = φ+

0 for some φ0 ∈ ∆(A). Let U be a neighborhood of φ0 in ∆(A). Then
U+ is a neighborhood of φ+

0 in ∆(A ×I I). Since φ+
0 ∈ ∂(A ×I I), by Theorem 3.2,

there exists (a, x) ∈ A×I I such that

∥(a, x)∧|∆(A×II)\U+∥∞ < ∥(a, x)∧|U+∥∞.
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Hence

∥(a+ x)∧|∆(A)\U∥∞ ≤ ∥(a, x)∧|∆(A×II)\U+∥∞ < ∥(a, x)∧|U+∥∞ = ∥(a+ x)∧|U∥∞.

Therefore φ0 ∈ ∂A.
case-II : φ̃0 = φ⋄

0 for some φ0 ∈ ∆(A). Let U be a neighborhood of φ0 in ∆(A). Then
U⋄ is a neighborhood of φ⋄

0 in ∆(A ×I I). Since φ⋄
0 ∈ ∂(A ×I I), by Theorem 3.2,

there exists (a, x) ∈ A×I I such that

∥(a, x)∧|∆(A×II)\U⋄∥∞ < ∥(a, x)∧|U⋄∥∞.

Hence

∥a∧|∆(A)\U∥∞ ≤ ∥(a, x)∧|∆(A×II)\U⋄∥∞ < ∥(a, x)∧|U⋄∥∞ = ∥a∧|U∥∞.

Therefore φ0 ∈ ∂A. Hence ∂(A×I I) ⊂ ∂+(A)
⊎

∂⋄(A).

Theorem 3.4. Let A be a commutative Banach algebra and I be closed ideal in A.
Then A×c I is semisimple if and only if A is semisimple.

Proof. Let A×I I be semisimple. Let a ∈ A such that φ(a) = 0 (φ ∈ ∆(A)). Then
for any φ̃ ∈ ∆(A×I I), φ̃((a, 0)) = 0. Since A×I I is semisimple, (a, 0) = (0, 0) gives
a = 0. Thus A is semisimple.

Conversely, suppose that A is semisimple. Let (a, x) ∈ A ×I I be such that
φ̃((a, x)) = 0 (φ̃ ∈ ∆(A ×I I)). Let φ ∈ ∆(A). Then φ+, φ⋄ ∈ ∆(A ×I I). So
that φ+((a, x)) = φ⋄((a, x)) = 0. Implies that φ(a) = φ(x) = 0. Since φ ∈ ∆(A) is
arbitrary and A is semisimple, we get a = x = 0. Hence A×I I is semisimple.
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